

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AIRÓN INGENIERÍA Y CONTROL AMBIENTAL S.A. Carlos Edwards 1155 Santiago CHILE 8920145

Carla Martinez Phone: (56) 2 237 48190

ENVIRONMENTAL

Valid To: May 31, 2025 Certificate Number: 5360.01

In recognition of the successful completion of the A2LA evaluation process, including an evaluation of the organization's compliance with The NELAC Institute's National Environmental Field Activities Program (NEFAP) Field Sampling and Measurement Organization Volume 1 Standard (TNI FSMO V1 2014 Rev 2.0), accreditation is granted to this organization to perform recognized methods using the following testing technologies and in the analyte categories identified below:

Analysis:

Matrices	Technology(ies) and Analyte(s)	In-House Method(s)	Reference Method(s)
Particulate Matter	Gravimetric – Particulate Matter	CH-5:2020	EPA 5:2020
		EPA 5B:2019	EPA 5B:2019
		EPA 17:2017	EPA 17:2017
Particulate Matter	PM 10, PM 2.5, Gravimetric	EPA 201A:2020	EPA 201A:2020
Particulate Matter	Condensable Particulate Matter –	EPA 202:2017	EPA 202
	Gravimetric		
Gases	Sulfur Dioxide, Sulfuric Acid, Sulfur	CH-6:1998	EPA 6
	Trioxide – Titrimetric		
Gases	Sulfur Dioxide, Sulfuric Acid, Sulfur	EPA 8:2019	EPA 8:2019
	Trioxide (SO ₂ , H ₂ SO ₄ , SO ₃)		
	Titrimetric		
Gases	Sulphur Dioxide (SO2) – Titrimetric,	EPA 16A:2017	EPA 16A:2017
	reported as Total Reduced Sulphur		

Measurement (Field):

<u>Matrices</u>	Technology(ies) and Analyte(s)	In-House Method(s)	Reference Method(s)
Gases – Particulate Matter	Sampling Points/Speed, Selection of Sampling Ports and Traverse Points	CH-1:1996	EPA 1:2020
Gases – Particulate Matter	Transverse/Speed	CH-1A:1996	EPA 1A:2017
Gases – Particulate Matter	Speed and Flow; Pitot Tube	CH-2:1996 EPA 2F:2017	EPA 2:2017 EPA 2F:2017
Gases – Particulate Matter	Flow Rate/Speed; Pitot Tube	CH-2C:2017	EPA 2C:2017

(A2LA Cert. No. 5360.01) Revised 1/19/2024

Page 1 of 3

Matrices	Technology(ies) and Analyte(s)	In-House Method(s)	Reference Method(s)
Gases – Particulate Matter	Dry Molecular Weight,	CH-3:1996	EPA 3:2017
	Orsat Analyzer		
Gases – Particulate Matter	Weight Concentration	CH-3A:1996	EPA 3A:2017
	(CO, CO_2, O_2)		
	Instrument Analyzer		
Gases – Particulate Matter	Correction Factor/Excess of Air	CH-3B:1996	EPA 3B:2017
	Orsat Analyzer		
Gases – Particulate Matter	Humidity, Volumetric/gravimetric	CH-4:1996	EPA 4:2020
Gases	Sulfur Dioxide Instrumental	CH-6C:1996	EPA 6C:2017
	Analyzer		
Gases	Nitrogen Oxide (NOx) Instrumental	CH-7E:1998	EPA 7E:2020
	Analyzer		
Gases	Carbon Monoxide (CO) Instrumental	CH-10:1998	EPA 10:2017
	Analyzer		
Gases	Total Gaseous Organic	CH-25-A:1998	EPA 25A:2017
	Concentration Flame Ionization		
	Analyzer-FID		

Sampling:

Matrices	Technology(ies) and Analyte(s)	In-House Method(s)	Reference Method(s)
Particulate Matter	Isokinetic Train	CH-5:2020	EPA 5:2020
	(Particulate Matter)	EPA 5B:2019	EPA 5B:2019
		EPA 17:2017	EPA 17:2017
Particulate Matter	Isokinetic Train, Glass Fiber Filter –	EPA 201A:2020	EPA 201A:2020
	Particulate Matter Emissions (PM)		
	10, PM 2.5 (Constant Sampling		
	Rate)		
Particulate Matter	Isokinetic Train, Glass Fiber Filter,	EPA 202:2017	EPA 202:2017
	Dry Impinger, Absorbing Solutions –		
	Condensable Particulate Matter		
Gases	Impinger, absorbing solutions –	CH-6:1998	EPA 6:2017
	Sulfur Dioxide (SO ₂)		
Gases	Isokinetic Train, Probe, Filter,	EPA 8:2019	EPA 8:2019
	Absorbing Solutions – Sulfur		
	Dioxide, Sulfuric Acid, Sulfur		
	Trioxide (SO ₂ , H ₂ SO ₄ , SO ₃)		
Gases	Impinger, Absorbing Solutions –	EPA 16A:2017	EPA 16A:2017
	Total Reduced Sulphur (Impinger)		
Gases	Isokinetic Train, Filter, and	CH-26A:2020	EPA 26A:2020
	Absorbing Solutions, Hydrogen		
	Bromide (HBr),		
	Hydrogen Chloride (HCl),		
	Hydrogen Fluoride (HF),		
	Chlorine (Cl ₂), Bromine (Br ₂)		

Matrices	Technology(ies) and Analyte(s)	In-House Method(s)	Reference Method(s)
Gases	Absorbing Solutions in Tenax-Tenax	EPA 0031:1996	EPA 0031:1996
	and Anasorb – VOC's: Volatile		
	Organic Compounds Benzene		
Gases	Isokinetic Train, Filter, and	CTM-027:1997	EPA CTM-027:1997
	Absorbing Solutions – Ammonia		
Gases	Isokinetic Train, Filter, and	EPA OTM-29:2011	EPA OTM-29:2011
	Absorbing Solutions – Cyanide		
Gases – Particulate Matter	Isokinetic Train, Resins XAD-2 –	CH-23:2010	EPA 23:2014
	Dioxins and Furans		
Gases – Particulate Matter	Isokinetic Train, Probe, Filter, and	CH-29:2010	EPA 29:2017
	Absorbing Solutions – Heavy Metals		
	(Sb-As-Ba-Be-Cd-Cr-Co-Cu-Pb-		
	Mn-Hg-Ni-P-Se-Ag-Tl-Zn)		

h

Accredited Laboratory

A2LA has accredited

AIRÓN INGENIERÍA Y CONTROL AMBIENTAL S.A.

Santiago, CHILE

for technical competence in the field of

Environmental Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of A2LA R219 – Specific Requirements – TNI Field Sampling and Measurement Organization Accreditation. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SEAL 1978 WILLIAM AZLA

Presented this 3rd day of April 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council

Certificate Number 5360.01 Valid to May 31, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.